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I build a random coefficient discrete choice model which allows for consumers
to trade in their old iPhone model for a new iPhone model. I want to estimate
the demand for different iPhone models and estimate the optimal product up-
date cycle on the firm’s side.

1 Model

The industry starts at time t = 0. The consumer has an infinite horizon
and discounts the future at rate β. The consumer can benefit from at most one
iPhone in a period.

Trade-in market assumptions (not necessarily true, but I want to make my
model simple):

• Consumer can trade her old iPhone in for credit, and the credit has an
upper bound.

• Consumer can only use the trade-in credit to buy iPhone, but not other
Apple product.

• No other second-hand market existed.

• If consumer has an iPhone, she can not switch to another brand. Once an
iPhone user, always an iPhone user.

• The trade-in value of iPhone depends only on two things: the model of
the iPhone, and the market price for that model.

At each time period t, there is a set of models j = i, ..., Jt. Each model has a
net flow utility fjt and a disutility from price Pjt. The consumer chooses one
of the available models or chooses to continue using her current iPhone. If she
trades in her current iPhone m and buys model j at time t, then at time t she
receives utility of:

ujt = fjt − Pjt + P0.4mt + ϵjt for j = 1, ..., Jt (1)

where ϵjt is an idiosyncratic type I extreme value term, i.i.d across models and
time periods. Let Pjt = αp ln (pjt), where pjt is price of model j in time t. pmt
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is the market price of her current iPhone model m at time t if it were new, but
since it is a trade in, she can only trade in for 40% the market price, so the
utility of trading her old iPhone model m at time t is P0.4mt

.
A consumer who does not purchase and trade receives utility of:

umt = fmt + ϵmt (2)

where flow utility comes from the iPhone m she currently owns plus another
idiosyncratic type I extreme value term ϵmt.

Consider now the consumer dynamic optimization decision. At time t, the
consumer is faced with Jt + 1 choices and chooses the option that maximizes
the sum of the expected discounted values of future utilities conditional on her
information at time t. Furthermore, the set of models and prices vary across
time, and the market price of existed model decreases in time. Further assume
that consumers know that firm will introduce a new model each k period.

Same notation as Gowrisankaran and Rysman (2012), define the state vari-
ables and Bellman equation. Let ε⃗t ≡ (ε0t, . . . , εJtt) and let gε⃗t denote the joint
density of ε⃗t. Then, the purchase decision for the consumer depends on ε⃗t, en-
dowment fmt, attributes of currently available models, and expectations about
future model attributes. Ωt denotes the current industry state and includes the
number of models Jt, price disutility and mean flow utility for each model. As-
sume Ωt evolves according to Markov process that accounts for firm optimizing
behavior. The state vector at time t is (ε⃗t, fmt,Ωt).

Bellman equation:

V (fm,Ω) =

∫
max {fm + βE [V (fm,Ω

′) | Ω] + εm,

max
j=1,...,J

{fj − Pj + P0.4m + βE [V (fj ,Ω
′) | Ω] + εj}

}
gε⃗(ε⃗)dε⃗,

(3)

where the first term is the value of keeping the current iPhone and the second
term is the value of trading in for the optimal replacement today. Note that here
J = Jt and Jt = 1 +

⌊
t
k

⌋
, so new model pop up every k periods and consumer

knows it.
We need to solve the Bellman but have to face curse of dimensionality.

Proceed by using aggregation properties of extreme value distribution to express
(3) in a simple form. Rewrite (3) as:

V (fm,Ω) = ln [exp (fm + βE [V (fm,Ω
′) | Ω]) + exp(δ(Ω))] (4)

where δ(Ω) is logit inclusive value and is defined as:

δ(Ω) = ln

 ∑
j=1,...,J

exp (fj − Pj + P0.4m + βE [V (fj ,Ω
′) | Ω])

 (5)

Define the net augmented utility as ϕ (see next chapter for specific expres-
sion). Similarly to Gowrisankaran and Rysman (2012), δ and ϕ together forms
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consumer’s belief and consumer makes decision based on them instead of Ω.
Adopting the Inclusive value sufficiency [IVS] in their paper, rewrite (4) as

V (fm, δ, ϕ) = ln [exp (fm + βE [V (fm, δ
′, ϕ′) | δ, ϕ]) + exp(δ)] (6)

and (5) as

δ = ln

 ∑
j=1,...,J

exp (fj − Pj + P0.4m + βE [V (fj , δ
′) | δ])

 (7)

Then, assume δt follows a linear autoregressive specification:

δt+1 = γ1 + γ2δt + vt+1 (8)

where vt+1 is normally distributed with mean zero and unobserved at time t.

2 Aggregation and Demand

Now let us consider the aggregation across consumers and market demand.
I will make a very restricted assumption: at the beginning of time t, every
consumer in this market has an iPhone, but you do not know which model he
holds. Assume there is a fixed amount of infinitely lived consumers who can hold
at most one iPhone each period. Assume the population size is M. Consumers
differ in mean flow utility fijt, disutility from price Pijt, idiosyncratic shocks ϵ
and inclusive logit value δ(Ω).

Define flow utility as a random coefficient model:

fijt = αx
i xjt + ξjt (9)

where xjt are the observed iPhone characteristics while ξjt is the common utility
from model j that everyone agrees on but not observable. For a given model
(say iPhone 7), the observed characteristics are fixed over time and the unob-
served characteristic is not fixed and is generally decreasing with time. Since
it is random coefficient, Pijt = αp

i ln (pjt), further assume αp
i and αx

i are time
invariant.

For consumer i holding model m in period t, the conditional probability of
trading in and purchasing model j is dmitj :

exp (δit)

exp (Vi (fimt, δit))
× exp (fijt − Pijt + P0.4imt + βE [Vi (fijt, δi,t+1) | fijt, δit])

exp (δit)
(10)

where the first term is the probability of choosing to trade in and the second
term is the probability of trading in for model j conditional on trading in.

Define the net augmented utility flow of buying model j as

ϕijt = αx
i xjt + ξjt − (Pijt − βE[Pijt+1]) (11)
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where Pijt−βE[P0.4ijt+1] is like the rental price of model j in period t. The net
augmented utility flow captures the per-period quality adjusted by the price that
consumers take into account when making choices. For example, even though
market price of iPhone 7 is low, consumer may still buy iPhone 12 which has
a much higher price with the faith that he can trade in his iPhone 12 for more
credit in the future and use it to buy iPhone 13, but if he buys iPhone7, the
trade-in credit will be pretty low because he expects the market price of iPhone
7 to decrease dramatically in the future. Define the mean net augmented utility
flow as:

ϕ̂jt = xjtα
x + ξjt (12)

Assume ϕijt follows a linear autoregressive specification:

ϕijt+1 = κ1i + κ2iϕijt + µt+1 (13)

where µt+1 is also normally distributed with mean zero and unobserved at time
t. So combine this equation and equation (8), consumer is generally correct
about the evolution of quality and the price of products.

And the probability of not trading in but holding the current iPhone model
m is d̃itm:

1− exp (δit)

exp (Vi (fimt, δit))
(14)

Equation (9) can be rewritten as

fijt = ϕ̂jt + (αx
i − αx)xjt (15)

where (αx
i − αx) ∼ N(0,Σ).

Let αi = (αx
i , α

p
i ) and has mean α ≡ (αx, αp) with variance matrix Σ which

is a diagonal matrix. For the consumer’s discount rate, instead of estimate it,
set it to β = 0.99.

3 Supply

Firm is playing a game. At time 0, firm has to decide the frequency of intro-
ducing new iPhone model and once determined, has to make an announcement
so all consumers will know and firm has to keep his commitment. At the be-
ginning of each period, firm also has to set the prices for all the iPhone models
on the menu. Assume firm has a constant marginal cost c ≥ 0 which is time
invariant. Introducing a new model will incur a fixed cost ϕ > 0, which is also
time invariant. So at time t, the number of models available for consumers is
Jt = 1 +

⌊
t
k

⌋
.

Let snjt denote the market share of consumers that purchase j in period t and
sojt be the proportion of consumers holding model j which they bought sometime
ago in period t. So the total proportion of consumers having model j at the end
of period t is

sjt = snjt + sojt (16)
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where

snjt =

∫
vi

∑
m ̸=j

dmitjsm,t−1dPv (17)

and

sojt =

∫
vi

d̃itjsj,t−1dPv (18)

The state space of the firm in period t is the menu of current available model
j⃗t ≡ (j0, . . . , jJt

)and the market share of each model s⃗t ≡ (s0, . . . , sJt
). And the

market demand for model j is Msjt.
Let β = 0.99 be the discount rate for the firm and firm’s profit-maximizing

problem is:

V (⃗jt, s⃗t) = max
{pjt}

j=Jt∑
j=1

[(pjt−c)Qjt−0.4

∫
v

∑
m ̸=j

dmitjsm,t−1pitmdv]−dtϕ+βV (⃗jt+1, s⃗t+1)

(19)
where dt = 1 if t is divisible by k, meaning it is time to make the commitment
and introduce a new product, and dt = 0 otherwise.

On the RHS of equation (16), the first term is the money firm gets for selling
model j; because people trade in for iPhone, the second term is the money lost
from trading-in program; the third term is the fixed cost from introducing a
new model if it is time to do so by commitment; finally the last term is the
discounted value from future.

But then the model is too complicated, for now let us assume firm can not
set prices, instead, price is set by a raccoon and in each period, this raccoon
will adjust the prices of all iPhone models and generally, he will lower the price
of old iPhone models. Hence, the only decision firm has to make is the product
update cycle k which should be announced at the beginning of period 0. So the
profit-maximizing problem becomes:

Vt(k) = max
k

j=Jt∑
j=1

[(pjt − c)Qjt − 0.4

∫
v

∑
m ̸=j

dmitjsm,t−1pitmMdv]− dtϕ+βVt+1(k)

(20)

4 Solution Strategy

4.1 Fake/ideal data

Suppose in each period, I can observe those things:

• population M, which is time fixed.

• each model’s characteristics (weight, size, battery life, camera resolution)

• market price of all the existing iPhone models (exogenous)
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• update circle chosen by Apple: k

• market share of people holding each model

• each individual’s purchasing history (this is a strong requirement for data)

4.2 Identification

4.2.1 Intuition

In fact, firm is increasing competition by introducing new model and con-
sumer is making substitution across time periods. Consumer heterogeneity Σ is
captured by consumer substitute between similar products (iPhone model with
similar characteristics). Change in market share of model associated with a
change in model characteristics captures the distribution of α.

4.2.2 Demand side

Further assume the unobserved common utility for model j ξjt evolves ac-
cording to AR(1):

ξjt+1 = −λξjt + ζjt (21)

There is a negative sign in front of λ because the idea is consumer’s unobserved
preference towards model j in decreasing in time, which is intuitive because
people tend to lose interest in obsolete product. λ is also a parameter to be
estimated. ζjt is the error term.

More assumptions! Consumers have different price sensitivity and assume
αp
i = αp

yi
, where yi is individual’s income which is lognormal distributed and

can be estimated through maybe census data. But there is selection bias in
using census data because iPhone users may be generally richer than other
mobile phone users, but since in my model Apple is the monopolist let us ignore
this issue for now. For consumer’s heterogeneity preferences in other iPhone
characteristics, I assume αx

i is independently normally distributed with mean
αx and standard deviation σαx .

So on the consumer side, the parameters I have to recover are θ = {αp, αx, σαx , λ}.
GMM criterion function:

G(θ) = z′
−→
ξ (θ) (22)

Let nonlinear parameters be θ1 = {αp, λ, σαx} and linear parameters be θ2 =
{αx}. GMM estimator:

θ̂ = argmin
θ
G(θ)′W−1G(θ) (23)

where G(θ) is vector of stacked moments and W is weighting matrix which
depends on consistent estimates of unknowns.

Computation

1. Guess θ1
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2. Get random draws of consumers and hold it fixed during estimation

3. Given θ1 and random draws, via contraction mapping, find the mean net
augmented utility ϕ̂jt

4. Recover ξjt from the final value of ϕ̂jt via linear regression by equation
(12)

5. Compute objective function (23)

6. Check convergence of GMM, return to step 1

7. θ2 can be expressed by θ1, so once pin down θ1, θ2 is solved.

How to proceed step 3 though?

1. In each iteration, for each value of ϕ̂jt and with the given θ1, calculate the
logit inclusive value δit using equation (7)1; calculate the net augmented
utility ϕijt using equation (11)2.

2. Use the δit and ϕijt in the previous step to estimate the coefficients in the
Markov process in equation (8) and equation (13).

3. Use the estimated coefficients got in step 2 to construct transition matrix.

4. Use the transition matrix to calculate Bellman in equation (6)

5. Compute individual choice probability dmitj and d̃itm by equation (10) and
(14)

6. Aggregate individual using equations (16), (17) and (18) to get the pre-
dicted market share.

7. Use the predicted market shares to update ϕ̂jt.

I follow Schiraldi’s (2011) approach, inverting the market share to recover
ϕjt:

ϕ̂jt
′
= ϕ̂jt + ψ(ln(šojt)− ln(s̃ojt(ϕ̂jt, θ))) (24)

(a) Note that ln(šojt) is the observed market share and is from data.

(b) s̃ojt(ϕ̂jt, θ) is the predicted market share from step 6

(c) ψ is a tuning parameter and Schiraldi sets it to 1− β

8. Keep iteration until ϕ̂jt converges.

1It should add subscript ”it” because (7) is at the individual time period now. Also in this
step we need to use equation (15)

2Remember ϕijt = ϕ̂jt − (Pijt − βE[Pijt+1])
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4.2.3 IV

ξjt could be correlated with pjt and cause endogeneity.

4.2.4 Supply side

On the firm side, the only decision is the update circle k. Suppose firm
knows the consumer’s optimization strategy and everything when setting k,
then optimal k∗ solves:

k∗ = argmax
k

V0(k) (25)

where V0(k) is defined in equation (20).
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